1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
# Main logic block for data-related interactions.
data_logic <- function(input, output, react_values) {
# Initialize a data frame to hold the datasets.
react_values$data_table <- data.frame(
Name = character(0),
`Time units` = character(0),
`Case counts` = character(0),
check.names = FALSE
)
manual_entry(input, output, react_values)
upload_data(input, output, react_values)
load_samples(input, output, react_values)
render_data_table(output, react_values)
render_plot(input, output, react_values, "Days")
render_plot(input, output, react_values, "Weeks")
delete_data(input, react_values)
export_data(output, react_values)
}
# Convert the input case counts string to an integer vector.
tokenize_counts <- function(counts_str) {
suppressWarnings(as.integer(unlist(strsplit(trimws(counts_str), ","))))
}
# Render the plots for daily and weekly data when the data table is updated.
render_plot <- function(input, output, react_values, time_units) {
observe({
datasets <- react_values$data_table[
which(react_values$data_table[["Time units"]] == time_units),
]
data_plot <- plotly::plot_ly(type = "scatter", mode = "lines")
if (nrow(datasets) > 0) {
for (i in seq_len(nrow(datasets))) {
counts <- tokenize_counts(datasets[i, 3])
data_plot <- plotly::add_trace(data_plot,
x = seq_along(counts) - 1, y = counts, name = datasets[i, 1]
)
}
}
plot_title <- paste(
if (time_units == "Days") "Daily" else "Weekly", "case counts"
)
data_plot <- plotly::layout(data_plot, title = plot_title,
xaxis = list(title = time_units), yaxis = list(title = "Cases")
)
data_plot <- plotly::config(data_plot, displaylogo = FALSE,
toImageButtonOptions = list(
filename = paste0("Rnaught_data_", tolower(time_units), "_plot")
)
)
output[[paste0("data_plot_", tolower(time_units))]] <-
plotly::renderPlotly(data_plot)
})
}
# Validate and add manually-entered datasets.
manual_entry <- function(input, output, react_values) {
observeEvent(input$data_bulk, {
validate_data(input, output, react_values, "data_area")
})
}
# Validate and add datasets from a CSV file.
upload_data <- function(input, output, react_values) {
observeEvent(input$data_upload, {
validate_data(input, output, react_values, "data_upload")
})
}
# Validate datasets and update the data table.
validate_data <- function(input, output, react_values, data_source) {
tryCatch(
{
if (data_source == "data_area") {
datasets <- read.csv(text = input$data_area, header = FALSE, sep = ",")
} else if (data_source == "data_upload") {
datasets <- read.csv(
file = input$data_upload$datapath, header = FALSE, sep = ","
)
}
names <- trimws(datasets[, 1])
units <- trimws(datasets[, 2])
counts <- apply(data.frame(datasets[, 3:ncol(datasets)]), 1,
function(row) {
row <- suppressWarnings(as.integer(row))
toString(row[!is.na(row) & row >= 0])
}
)
warning_text <- ""
# Ensure the dataset names are neither blank nor duplicates.
if (anyNA(names) || any(names == "")) {
warning_text <- paste0(warning_text,
"Each row must begin with a non-blank dataset name.<br>"
)
} else {
if (length(unique(names)) != length(names)) {
warning_text <- paste0(warning_text,
"The rows contain duplicate dataset names.<br>"
)
}
if (any(names %in% react_values$data_table[, 1])) {
warning_text <- paste0(warning_text,
"The rows contain dataset names which already exist.<br>"
)
}
}
# Ensure the second entry in each row is a time unit equal to
# "Days" or "Weeks".
if (!all(units %in% c("Days", "Weeks"))) {
warning_text <- paste0(warning_text,
"The second entry in each row must be either 'Days' or 'Weeks'.<br>"
)
}
# Ensure the counts in each row have at least one non-negative integer.
if (any(counts == "")) {
warning_text <- paste0(warning_text,
"Each row must contain at least one non-negative integer.<br>"
)
}
output[[paste0(data_source, "_warn")]] <- renderUI(HTML(warning_text))
if (warning_text == "") {
# Add the new datasets to the data table.
new_rows <- data.frame(names, units, counts)
colnames(new_rows) <- c("Name", "Time units", "Case counts")
react_values$data_table <- rbind(react_values$data_table, new_rows)
# Evaluate all existing estimators on the new datasets and update the
# corresponding columns in the estimates table.
update_estimates_cols(new_rows, react_values)
showNotification("Datasets added successfully.", duration = 3)
}
},
error = function(e) {
output[[paste0(data_source, "_warn")]] <- renderText(
"The input does not match the required format."
)
}
)
}
# Load sample datasets.
load_samples <- function(input, output, react_values) {
observeEvent(input$data_samples, {
names <- c()
units <- c()
counts <- c()
# COVID-19 Canada, March 2020 (weekly).
if (input$covid_canada) {
names <- c(names, "COVID-19 Canada 2020/03/03 - 2020/03/31")
units <- c(units, "Weeks")
counts <- c(counts, toString(Rnaught::COVIDCanada[seq(41, 69, 7), 2]))
}
# COVID-19 Ontario, March 2020 (weekly).
if (input$covid_ontario) {
names <- c(names, "COVID-19 Ontario 2020/03/03 - 2020/03/31")
units <- c(units, "Weeks")
counts <- c(counts,
toString(Rnaught::COVIDCanadaPT[seq(10176, 10204, 7), 3])
)
}
if (length(names) == 0) {
output$data_samples_warn <- renderText(
"At least one sample dataset must be selected."
)
} else if (any(names %in% react_values$data_table[, 1])) {
output$data_samples_warn <- renderText(
"At least one of the selected dataset names already exist."
)
} else {
output$data_samples_warn <- renderText("")
new_rows <- data.frame(names, units, counts)
colnames(new_rows) <- c("Name", "Time units", "Case counts")
react_values$data_table <- rbind(react_values$data_table, new_rows)
# Evaluate all existing estimators on the sample datasets and update the
# corresponding columns in the estimates table.
update_estimates_cols(new_rows, react_values)
showNotification("Datasets added successfully.", duration = 3)
}
})
}
# Render the data table when new datasets are added.
render_data_table <- function(output, react_values) {
observe({
output$data_table <- DT::renderDataTable(
react_values$data_table, rownames = FALSE
)
})
}
# Delete rows in the data table and the corresponding columns in the estimates
# table.
delete_data <- function(input, react_values) {
observeEvent(input$data_delete, {
rows_selected <- input$data_table_rows_selected
react_values$data_table <- react_values$data_table[-rows_selected, ]
react_values$estimates_table <-
react_values$estimates_table[, -(rows_selected + 2)]
})
}
# Export data table as a CSV file.
export_data <- function(output, react_values) {
output$data_export <- downloadHandler(
filename = function() {
paste0("Rnaught_data_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv")
},
content = function(file) {
write.csv(react_values$data_table, file, row.names = FALSE)
}
)
}
# When new datasets are added, evaluate all existing estimators on them and
# add new columns to the estimates table.
update_estimates_cols <- function(datasets, react_values) {
new_cols <- data.frame(
matrix(nrow = nrow(react_values$estimates_table), ncol = nrow(datasets))
)
colnames(new_cols) <- datasets[, 1]
if (nrow(new_cols) > 0) {
for (row in seq_len(nrow(new_cols))) {
estimator <- react_values$estimators[[row]]
for (col in seq_len(ncol(new_cols))) {
new_cols[row, col] <- eval_estimator(estimator, datasets[col, ])
}
}
}
react_values$estimates_table <- cbind(
react_values$estimates_table, new_cols
)
}
|