# Main logic block for data-related interactions. data_logic <- function(input, output, react_values) { # Initialize a data frame to hold the datasets. react_values$data_table <- data.frame( Name = character(0), `Time units` = character(0), `Case counts` = character(0), check.names = FALSE ) manual_entry(input, output, react_values) upload_data(input, output, react_values) load_samples(input, output, react_values) render_data_table(output, react_values) render_plot(input, output, react_values, "Days") render_plot(input, output, react_values, "Weeks") delete_data(input, react_values) export_data(output, react_values) } # Convert the input case counts string to an integer vector. tokenize_counts <- function(counts_str) { suppressWarnings(as.integer(unlist(strsplit(trimws(counts_str), ",")))) } # Render the plots for daily and weekly data when the data table is updated. render_plot <- function(input, output, react_values, time_units) { observe({ datasets <- react_values$data_table[ which(react_values$data_table[["Time units"]] == time_units), ] data_plot <- plotly::plot_ly(type = "scatter", mode = "lines") if (nrow(datasets) > 0) { for (i in seq_len(nrow(datasets))) { counts <- tokenize_counts(datasets[i, 3]) data_plot <- plotly::add_trace(data_plot, x = seq_along(counts) - 1, y = counts, name = datasets[i, 1] ) } } plot_title <- paste( if (time_units == "Days") "Daily" else "Weekly", "case counts" ) data_plot <- plotly::layout(data_plot, title = plot_title, xaxis = list(title = time_units), yaxis = list(title = "Cases") ) data_plot <- plotly::config(data_plot, displaylogo = FALSE, toImageButtonOptions = list( filename = paste0("Rnaught_data_", tolower(time_units), "_plot") ) ) output[[paste0("data_plot_", tolower(time_units))]] <- plotly::renderPlotly(data_plot) }) } # Validate and add manually-entered datasets. manual_entry <- function(input, output, react_values) { observeEvent(input$data_bulk, { validate_data(input, output, react_values, "data_area") }) } # Validate and add datasets from a CSV file. upload_data <- function(input, output, react_values) { observeEvent(input$data_upload, { validate_data(input, output, react_values, "data_upload") }) } # Validate datasets and update the data table. validate_data <- function(input, output, react_values, data_source) { tryCatch( { if (data_source == "data_area") { datasets <- read.csv(text = input$data_area, header = FALSE, sep = ",") } else if (data_source == "data_upload") { datasets <- read.csv( file = input$data_upload$datapath, header = FALSE, sep = "," ) } names <- trimws(datasets[, 1]) units <- trimws(datasets[, 2]) counts <- apply(data.frame(datasets[, 3:ncol(datasets)]), 1, function(row) { row <- suppressWarnings(as.integer(row)) toString(row[!is.na(row) & row >= 0]) } ) warning_text <- "" # Ensure the dataset names are neither blank nor duplicates. if (anyNA(names) || any(names == "")) { warning_text <- paste0(warning_text, "Each row must begin with a non-blank dataset name.
" ) } else { if (length(unique(names)) != length(names)) { warning_text <- paste0(warning_text, "The rows contain duplicate dataset names.
" ) } if (any(names %in% react_values$data_table[, 1])) { warning_text <- paste0(warning_text, "The rows contain dataset names which already exist.
" ) } } # Ensure the second entry in each row is a time unit equal to # "Days" or "Weeks". if (!all(units %in% c("Days", "Weeks"))) { warning_text <- paste0(warning_text, "The second entry in each row must be either 'Days' or 'Weeks'.
" ) } # Ensure the counts in each row have at least one non-negative integer. if (any(counts == "")) { warning_text <- paste0(warning_text, "Each row must contain at least one non-negative integer.
" ) } output[[paste0(data_source, "_warn")]] <- renderUI(HTML(warning_text)) if (warning_text == "") { # Add the new datasets to the data table. new_rows <- data.frame(names, units, counts) colnames(new_rows) <- c("Name", "Time units", "Case counts") react_values$data_table <- rbind(react_values$data_table, new_rows) # Evaluate all existing estimators on the new datasets and update the # corresponding columns in the estimates table. update_estimates_cols(new_rows, react_values) showNotification("Datasets added successfully.", duration = 3) } }, error = function(e) { output[[paste0(data_source, "_warn")]] <- renderText( "The input does not match the required format." ) } ) } # Load sample datasets. load_samples <- function(input, output, react_values) { observeEvent(input$data_samples, { names <- c() units <- c() counts <- c() # COVID-19 Canada, March 2020 (weekly). if (input$covid_canada) { names <- c(names, "COVID-19 Canada 2020/03/03 - 2020/03/31") units <- c(units, "Weeks") counts <- c(counts, toString(Rnaught::COVIDCanada[seq(41, 69, 7), 2])) } # COVID-19 Ontario, March 2020 (weekly). if (input$covid_ontario) { names <- c(names, "COVID-19 Ontario 2020/03/03 - 2020/03/31") units <- c(units, "Weeks") counts <- c(counts, toString(Rnaught::COVIDCanadaPT[seq(10176, 10204, 7), 3]) ) } if (length(names) == 0) { output$data_samples_warn <- renderText( "At least one sample dataset must be selected." ) } else if (any(names %in% react_values$data_table[, 1])) { output$data_samples_warn <- renderText( "At least one of the selected dataset names already exist." ) } else { output$data_samples_warn <- renderText("") new_rows <- data.frame(names, units, counts) colnames(new_rows) <- c("Name", "Time units", "Case counts") react_values$data_table <- rbind(react_values$data_table, new_rows) # Evaluate all existing estimators on the sample datasets and update the # corresponding columns in the estimates table. update_estimates_cols(new_rows, react_values) showNotification("Datasets added successfully.", duration = 3) } }) } # Render the data table when new datasets are added. render_data_table <- function(output, react_values) { observe({ output$data_table <- DT::renderDataTable( react_values$data_table, rownames = FALSE ) }) } # Delete rows in the data table and the corresponding columns in the estimates # table. delete_data <- function(input, react_values) { observeEvent(input$data_delete, { rows_selected <- input$data_table_rows_selected react_values$data_table <- react_values$data_table[-rows_selected, ] react_values$estimates_table <- react_values$estimates_table[, -(rows_selected + 2)] }) } # Export data table as a CSV file. export_data <- function(output, react_values) { output$data_export <- downloadHandler( filename = function() { paste0("Rnaught_data_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv") }, content = function(file) { write.csv(react_values$data_table, file, row.names = FALSE) } ) } # When new datasets are added, evaluate all existing estimators on them and # add new columns to the estimates table. update_estimates_cols <- function(datasets, react_values) { new_cols <- data.frame( matrix(nrow = nrow(react_values$estimates_table), ncol = nrow(datasets)) ) colnames(new_cols) <- datasets[, 1] if (nrow(new_cols) > 0) { for (row in seq_len(nrow(new_cols))) { estimator <- react_values$estimators[[row]] for (col in seq_len(ncol(new_cols))) { new_cols[row, col] <- eval_estimator(estimator, datasets[col, ]) } } } react_values$estimates_table <- cbind( react_values$estimates_table, new_cols ) }