# Main logic block for data-related interactions.
data_logic <- function(input, output, react_values) {
# Initialize a data frame to hold the datasets.
react_values$data_table <- data.frame(
Name = character(0),
`Time units` = character(0),
`Case counts` = character(0),
check.names = FALSE
)
manual_entry(input, output, react_values)
upload_data(input, output, react_values)
load_samples(input, output, react_values)
render_data_table(output, react_values)
render_plot(input, output, react_values, "Days")
render_plot(input, output, react_values, "Weeks")
delete_data(input, react_values)
export_data(output, react_values)
}
# Convert the input case counts string to an integer vector.
tokenize_counts <- function(counts_str) {
suppressWarnings(as.integer(unlist(strsplit(trimws(counts_str), ","))))
}
# Render the plots for daily and weekly data when the data table is updated.
render_plot <- function(input, output, react_values, time_units) {
observe({
datasets <- react_values$data_table[
which(react_values$data_table[["Time units"]] == time_units),
]
data_plot <- plotly::plot_ly(type = "scatter", mode = "lines")
if (nrow(datasets) > 0) {
for (i in seq_len(nrow(datasets))) {
counts <- tokenize_counts(datasets[i, 3])
data_plot <- plotly::add_trace(data_plot,
x = seq_along(counts) - 1, y = counts, name = datasets[i, 1]
)
}
}
plot_title <- paste(
if (time_units == "Days") "Daily" else "Weekly", "case counts"
)
data_plot <- plotly::layout(data_plot, title = plot_title,
xaxis = list(title = time_units), yaxis = list(title = "Cases")
)
data_plot <- plotly::config(data_plot, displaylogo = FALSE,
toImageButtonOptions = list(
filename = paste0("Rnaught_data_", tolower(time_units), "_plot")
)
)
output[[paste0("data_plot_", tolower(time_units))]] <-
plotly::renderPlotly(data_plot)
})
}
# Validate and add manually-entered datasets.
manual_entry <- function(input, output, react_values) {
observeEvent(input$data_bulk, {
validate_data(input, output, react_values, "data_area")
})
}
# Validate and add datasets from a CSV file.
upload_data <- function(input, output, react_values) {
observeEvent(input$data_upload, {
validate_data(input, output, react_values, "data_upload")
})
}
# Validate datasets and update the data table.
validate_data <- function(input, output, react_values, data_source) {
tryCatch(
{
if (data_source == "data_area") {
datasets <- read.csv(text = input$data_area, header = FALSE, sep = ",")
} else if (data_source == "data_upload") {
datasets <- read.csv(
file = input$data_upload$datapath, header = FALSE, sep = ","
)
}
names <- trimws(datasets[, 1])
units <- trimws(datasets[, 2])
counts <- apply(data.frame(datasets[, 3:ncol(datasets)]), 1,
function(row) {
row <- suppressWarnings(as.integer(row))
toString(row[!is.na(row) & row >= 0])
}
)
warning_text <- ""
# Ensure the dataset names are neither blank nor duplicates.
if (anyNA(names) || any(names == "")) {
warning_text <- paste0(warning_text,
"Each row must begin with a non-blank dataset name.
"
)
} else {
if (length(unique(names)) != length(names)) {
warning_text <- paste0(warning_text,
"The rows contain duplicate dataset names.
"
)
}
if (any(names %in% react_values$data_table[, 1])) {
warning_text <- paste0(warning_text,
"The rows contain dataset names which already exist.
"
)
}
}
# Ensure the second entry in each row is a time unit equal to
# "Days" or "Weeks".
if (!all(units %in% c("Days", "Weeks"))) {
warning_text <- paste0(warning_text,
"The second entry in each row must be either 'Days' or 'Weeks'.
"
)
}
# Ensure the counts in each row have at least one non-negative integer.
if (any(counts == "")) {
warning_text <- paste0(warning_text,
"Each row must contain at least one non-negative integer.
"
)
}
output[[paste0(data_source, "_warn")]] <- renderUI(HTML(warning_text))
if (warning_text == "") {
# Add the new datasets to the data table.
new_rows <- data.frame(names, units, counts)
colnames(new_rows) <- c("Name", "Time units", "Case counts")
react_values$data_table <- rbind(react_values$data_table, new_rows)
# Evaluate all existing estimators on the new datasets and update the
# corresponding columns in the estimates table.
update_estimates_cols(new_rows, react_values)
showNotification("Datasets added successfully.", duration = 3)
}
},
error = function(e) {
output[[paste0(data_source, "_warn")]] <- renderText(
"The input does not match the required format."
)
}
)
}
# Load sample datasets.
load_samples <- function(input, output, react_values) {
observeEvent(input$data_samples, {
names <- c()
units <- c()
counts <- c()
# COVID-19 Canada, March 2020 (weekly).
if (input$covid_canada) {
names <- c(names, "COVID-19 Canada 2020/03/03 - 2020/03/31")
units <- c(units, "Weeks")
counts <- c(counts, toString(Rnaught::COVIDCanada[seq(41, 69, 7), 2]))
}
# COVID-19 Ontario, March 2020 (weekly).
if (input$covid_ontario) {
names <- c(names, "COVID-19 Ontario 2020/03/03 - 2020/03/31")
units <- c(units, "Weeks")
counts <- c(counts,
toString(Rnaught::COVIDCanadaPT[seq(10176, 10204, 7), 3])
)
}
if (length(names) == 0) {
output$data_samples_warn <- renderText(
"At least one sample dataset must be selected."
)
} else if (any(names %in% react_values$data_table[, 1])) {
output$data_samples_warn <- renderText(
"At least one of the selected dataset names already exist."
)
} else {
output$data_samples_warn <- renderText("")
new_rows <- data.frame(names, units, counts)
colnames(new_rows) <- c("Name", "Time units", "Case counts")
react_values$data_table <- rbind(react_values$data_table, new_rows)
# Evaluate all existing estimators on the sample datasets and update the
# corresponding columns in the estimates table.
update_estimates_cols(new_rows, react_values)
showNotification("Datasets added successfully.", duration = 3)
}
})
}
# Render the data table when new datasets are added.
render_data_table <- function(output, react_values) {
observe({
output$data_table <- DT::renderDataTable(
react_values$data_table, rownames = FALSE
)
})
}
# Delete rows in the data table and the corresponding columns in the estimates
# table.
delete_data <- function(input, react_values) {
observeEvent(input$data_delete, {
rows_selected <- input$data_table_rows_selected
react_values$data_table <- react_values$data_table[-rows_selected, ]
react_values$estimates_table <-
react_values$estimates_table[, -(rows_selected + 2)]
})
}
# Export data table as a CSV file.
export_data <- function(output, react_values) {
output$data_export <- downloadHandler(
filename = function() {
paste0("Rnaught_data_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv")
},
content = function(file) {
write.csv(react_values$data_table, file, row.names = FALSE)
}
)
}
# When new datasets are added, evaluate all existing estimators on them and
# add new columns to the estimates table.
update_estimates_cols <- function(datasets, react_values) {
new_cols <- data.frame(
matrix(nrow = nrow(react_values$estimates_table), ncol = nrow(datasets))
)
colnames(new_cols) <- datasets[, 1]
if (nrow(new_cols) > 0) {
for (row in seq_len(nrow(new_cols))) {
estimator <- react_values$estimators[[row]]
for (col in seq_len(ncol(new_cols))) {
new_cols[row, col] <- eval_estimator(estimator, datasets[col, ])
}
}
}
react_values$estimates_table <- cbind(
react_values$estimates_table, new_cols
)
}