export(ID)
export(IDEA)
export(WP)
-export(WP_known)
-export(WP_unknown)
-export(computeLL)
export(seqB)
#'
#' @return The function returns the maximum likelihood estimator of R0.
#'
-#' @export
+#' @keywords internal
WP_known <- function(NT, p) {
k <- length(p)
TT <- length(NT) - 1
#' \code{J0} (the location for the maximum likelihood estimator \code{Rhat}). If \code{JJ} and \code{J0}
#' are not the same, this means that the maximum likelihood estimator is not unique.
#'
-#' @export
+#' @keywords internal
WP_unknown <- function(NT, B=100, shape.max=10, scale.max=10, tol=0.999) {
shape <- seq(0, shape.max, length.out=B+1)
scale <- seq(0, scale.max, length.out=B+1)
#'
#' @return This function returns the log-likelihood at the input variables and parameters.
#'
-#' @export
+#' @keywords internal
computeLL <- function(p, NT, R0) {
k <- length(p)
TT <- length(NT) - 1
This is a background/internal function called by \code{WP}. It computes the maximum
likelihood estimator of R0 assuming that the serial distribution is known and finite discrete.
}
+\keyword{internal}
The function then implements a simple grid search algorithm to obtain the maximum likelihood estimator
of R0 as well as the gamma parameters.
}
+\keyword{internal}
\description{
This is a background/internal function called by \code{WP}. It computes the log-likelihood.
}
+\keyword{internal}