]>
nmode's Git Repositories - Rnaught/blob - R/WP_unknown.R
1 #' WP method background function WP_unknown
3 #' This is a background/internal function called by \code{WP}. It computes the maximum likelihood estimator
4 #' of R0 assuming that the serial distribution is unknown but comes from a discretized gamma distribution.
5 #' The function then implements a simple grid search algorithm to obtain the maximum likelihood estimator
6 #' of R0 as well as the gamma parameters.
8 #' @param NT Vector of case counts.
9 #' @param B Length of grid for shape and scale (grid search parameter).
10 #' @param shape.max Maximum shape value (grid \code{search} parameter).
11 #' @param scale.max Maximum scale value (grid \code{search} parameter).
12 #' @param tol cutoff value for cumulative distribution function of the serial distribution (defaults to 0.999).
14 #' @return The function returns \code{Rhat}, the maximum likelihood estimator of R0, as well as the maximum
15 #' likelihood estimator of the discretized serial distribution given by \code{p} (the probability mass
16 #' function) and \code{range.max} (the distribution has support on the integers one to \code{range.max}).
17 #' The function also returns \code{resLL} (all values of the log-likelihood) at \code{shape} (grid for
18 #' shape parameter) and at \code{scale} (grid for scale parameter), as well as \code{resR0} (the full
19 #' vector of maximum likelihood estimators), \code{JJ} (the locations for the likelihood for these), and
20 #' \code{J0} (the location for the maximum likelihood estimator \code{Rhat}). If \code{JJ} and \code{J0}
21 #' are not the same, this means that the maximum likelihood estimator is not unique.
24 WP_unknown
<- function(NT
, B
=100, shape.max
=10, scale.max
=10, tol
=0.999) {
25 shape
<- seq(0, shape.max
, length.out
=B
+1)
26 scale
<- seq(0, scale.max
, length.out
=B
+1)
30 resLL
<- matrix(0,B
,B
)
31 resR0
<- matrix(0,B
,B
)
35 range.max
<- ceiling(qgamma(tol
, shape
=shape
[i
], scale
=scale
[j
]))
36 p
<- diff(pgamma(0:range.max
, shape
=shape
[i
], scale
=scale
[j
]))
38 mle
<- WP_known(NT
, p
)
39 resLL
[i
,j
] <- computeLL(p
, NT
, mle
)
44 J0
<- which.max(resLL
)
46 JJ
<- which(resLL
== resLL
[J0
], arr.ind
=TRUE)
47 range.max
<- ceiling(qgamma(tol
, shape
=shape
[JJ
[1]], scale
=scale
[JJ
[2]]))
48 p
<- diff(pgamma(0:range.max
, shape
=shape
[JJ
[1]], scale
=scale
[JJ
[2]]))
51 return(list(Rhat
=R0hat
, J0
=J0
, ll
=resLL
, Rs
=resR0
, scale
=scale
, shape
=shape
, JJ
=JJ
, p
=p
, range.max
=range.max
))