1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
#' Sequential Bayes (seqB)
#'
#' This function implements a sequential Bayesian estimation method of R0 due to
#' Bettencourt and Riberio (PloS One, 2008). See details for important
#' implementation notes.
#'
#' The method sets a uniform prior distribution on R0 with possible values
#' between `0` and `kappa`, discretized to a fine grid. The distribution of R0
#' is then updated sequentially, with one update for each new case count
#' observation. The final estimate of R0 is the mean of the (last) posterior
#' distribution. The prior distribution is the initial belief of the
#' distribution of R0, which is the uninformative uniform distribution with
#' values between `0` and `kappa`. Users can change the value of `kappa` only
#' (i.e., the prior distribution cannot be changed from the uniform). As more
#' case counts are observed, the influence of the prior distribution should
#' lessen on the final estimate.
#'
#' This method is based on an approximation of the SIR model, which is most
#' valid at the beginning of an epidemic. The method assumes that the mean of
#' the serial distribution (sometimes called the serial interval) is known. The
#' final estimate can be quite sensitive to this value, so sensitivity testing
#' is strongly recommended. Users should be careful about units of time (e.g.,
#' are counts observed daily or weekly?) when implementing.
#'
#' Our code has been modified to provide an estimate even if case counts equal
#' to zero are present in some time intervals. This is done by grouping the
#' counts over such periods of time. Without grouping, and in the presence of
#' zero counts, no estimate can be provided.
#'
#' @param cases Vector of case counts. The vector must only contain non-negative
#' integers, and have at least two positive integers.
#' @param mu Mean of the serial distribution. This must be a positive number.
#' The value should match the case counts in time units. For example, if case
#' counts are weekly and the serial distribution has a mean of seven days,
#' then `mu` should be set to `1`. If case counts are daily and the serial
#' distribution has a mean of seven days, then `mu` should be set to `7`.
#' @param kappa Largest possible value of the uniform prior (defaults to `20`).
#' This must be a number greater than or equal to `1`. It describes the prior
#' belief on the ranges of R0, and should be set to a higher value if R0 is
#' believed to be larger.
#' @param post Whether to return the posterior distribution of R0 instead of the
#' estimate of R0 (defaults to `FALSE`). This must be a value identical to
#' `TRUE` or `FALSE`.
#'
#' @return If `post` is identical to `TRUE`, a list containing the following
#' components is returned:
#' * `supp` - the support of the posterior distribution of R0
#' * `pmf` - the probability mass function of the posterior distribution of R0
#'
#' Otherwise, if `post` is identical to `FALSE`, only the estimate of R0 is
#' returned. Note that the estimate is equal to `sum(supp * pmf)` (i.e., the
#' posterior mean).
#'
#' @references [Bettencourt and Riberio (PloS One, 2008)](
#' https://doi.org/10.1371/journal.pone.0002185)
#'
#' @seealso `vignette("seq_bayes_post", package = "Rnaught")` for examples of
#' using the posterior distribution.
#'
#' @export
#'
#' @examples
#' # Weekly data.
#' cases <- c(1, 4, 10, 5, 3, 4, 19, 3, 3, 14, 4)
#'
#' # Obtain R0 when the serial distribution has a mean of five days.
#' seq_bayes(cases, mu = 5 / 7)
#'
#' # Obtain R0 when the serial distribution has a mean of three days.
#' seq_bayes(cases, mu = 3 / 7)
#'
#' # Obtain R0 when the serial distribution has a mean of seven days, and R0 is
#' # believed to be at most 4.
#' estimate <- seq_bayes(cases, mu = 1, kappa = 4)
#'
#' # Same as above, but return the posterior distribution of R0 instead of the
#' # estimate.
#' posterior <- seq_bayes(cases, mu = 1, kappa = 4, post = TRUE)
#'
#' # Display the support and probability mass function of the posterior.
#' posterior$supp
#' posterior$pmf
#'
#' # Note that the following always holds:
#' estimate == sum(posterior$supp * posterior$pmf)
seq_bayes <- function(cases, mu, kappa = 20, post = FALSE) {
validate_cases(cases, min_length = 2, min_count = 0)
if (!is_real(mu) || mu <= 0) {
stop("The serial interval (`mu`) must be a number greater than 0.",
call. = FALSE
)
}
if (!is_real(kappa) || kappa < 1) {
stop(
paste("The largest value of the uniform prior (`kappa`)",
"must be a number greater than or equal to 1."
), call. = FALSE
)
}
if (!identical(post, TRUE) && !identical(post, FALSE)) {
stop("The posterior flag (`post`) must be set to `TRUE` or `FALSE`.",
call. = FALSE
)
}
if (any(cases == 0)) {
times <- which(cases > 0)
if (length(times) < 2) {
stop("Case counts must contain at least two positive integers.",
call. = FALSE
)
}
cases <- cases[times]
} else {
times <- seq_along(cases)
}
support <- seq(0, kappa, 0.01)
tau <- diff(times)
prior <- rep(1, kappa / 0.01 + 1)
prior <- prior / sum(prior)
posterior <- seq(0, length(prior))
for (i in seq_len(length(cases) - 1)) {
lambda <- tau[i] / mu * (support - 1) + log(cases[i])
log_like <- cases[i + 1] * lambda - exp(lambda)
max_log_like <- max(log_like)
if (max_log_like > 700) {
log_like <- log_like - max_log_like + 700
}
posterior <- exp(log_like) * prior
posterior <- posterior / sum(posterior)
prior <- posterior
}
if (!post) {
return(sum(support * posterior))
}
list(supp = support, pmf = posterior)
}
|