#' @return If `post` is identical to `TRUE`, a list containing the following
#' components is returned:
#' * `supp` - the support of the posterior distribution of R0
-#' * `pmf` - the probability mass function of the posterior distribution
+#' * `pmf` - the probability mass function of the posterior distribution of R0
#'
#' Otherwise, if `post` is identical to `FALSE`, only the estimate of R0 is
#' returned. Note that the estimate is equal to `sum(supp * pmf)` (i.e., the
#' # believed to be at most 4.
#' estimate <- seq_bayes(cases, mu = 1, kappa = 4)
#'
-#' # Same as above, but return the posterior distribution instead of the
+#' # Same as above, but return the posterior distribution of R0 instead of the
#' # estimate.
#' posterior <- seq_bayes(cases, mu = 1, kappa = 4, post = TRUE)
#'
+#' # Display the support and probability mass function of the posterior.
+#' posterior$supp
+#' posterior$pmf
+#'
#' # Note that the following always holds:
#' estimate == sum(posterior$supp * posterior$pmf)
seq_bayes <- function(cases, mu, kappa = 20, post = FALSE) {
components is returned:
\itemize{
\item \code{supp} - the support of the posterior distribution of R0
-\item \code{pmf} - the probability mass function of the posterior distribution
+\item \code{pmf} - the probability mass function of the posterior distribution of R0
}
Otherwise, if \code{post} is identical to \code{FALSE}, only the estimate of R0 is
# believed to be at most 4.
estimate <- seq_bayes(cases, mu = 1, kappa = 4)
-# Same as above, but return the posterior distribution instead of the
+# Same as above, but return the posterior distribution of R0 instead of the
# estimate.
posterior <- seq_bayes(cases, mu = 1, kappa = 4, post = TRUE)
+# Display the support and probability mass function of the posterior.
+posterior$supp
+posterior$pmf
+
# Note that the following always holds:
estimate == sum(posterior$supp * posterior$pmf)
}