aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorNaeem Model <me@nmode.ca>2023-06-24 23:37:22 +0000
committerNaeem Model <me@nmode.ca>2023-06-24 23:37:22 +0000
commit336017bd64d44f851b8c12d9f45359b5c2a6e2c3 (patch)
tree3a9f2f34dff498d8ec45c18a36417df8d462edee /R
parenta50ca5855eecf12908327252d627df3af076fc88 (diff)
Create shiny server
Diffstat (limited to 'R')
-rw-r--r--R/server.R276
1 files changed, 276 insertions, 0 deletions
diff --git a/R/server.R b/R/server.R
new file mode 100644
index 0000000..9929010
--- /dev/null
+++ b/R/server.R
@@ -0,0 +1,276 @@
+#' @importFrom methods is
+#' @importFrom utils read.csv write.csv
+server <- function(input, output) {
+ # Hide the sidebar if the 'About' tab is active.
+ shiny::observeEvent(input$tabset, {
+ if (input$tabset == "About") {
+ shinyjs::hideElement(selector="#sidebar")
+ shinyjs::removeCssClass("main", "col-sm-8")
+ shinyjs::addCssClass("main", "col-sm-12")
+ } else {
+ shinyjs::showElement(selector="#sidebar")
+ shinyjs::removeCssClass("main", "col-sm-12")
+ shinyjs::addCssClass("main", "col-sm-8")
+ }
+ })
+
+ reactive <- shiny::reactiveValues(
+ data_table=data.frame(Name=character(0), `Reporting Frequency`=character(0), `Case Counts`=numeric(0), check.names=FALSE),
+ est_table=data.frame(Dataset=character(0)),
+ estimators=list()
+ )
+
+ # Validate and add datasets when button is clicked.
+ # Also evaluate the new datasets on existing estimators.
+ shiny::observeEvent(input$addData, {
+ # Option 1: Manual entry.
+ if (input$dataInputMethod == 1) {
+ checks_passed <- TRUE
+
+ # Ensure the dataset name is not blank.
+ if (grepl("^\\s*$", input$dataName)) {
+ output$dataNameWarn <- shiny::renderText("Error: The dataset name cannot be blank.")
+ checks_passed <- FALSE
+ }
+ # Ensure the dataset name is not a duplicate.
+ else if (input$dataName %in% reactive$data_table[,1]) {
+ output$dataNameWarn <- shiny::renderText("Error: There is already a dataset with the specified name.")
+ checks_passed <- FALSE
+ }
+ else
+ output$dataNameWarn <- shiny::renderText("")
+
+ # Ensure the case counts consist only of non-negative integers, separated by commas.
+ counts <- as.numeric(unlist(strsplit(input$dataCounts, split=",")))
+ if (any(is.na(counts)) || any(counts <= 0) || any(counts %% 1 != 0)) {
+ output$dataCountsWarn <- shiny::renderText("Error: The list of case counts should only contain non-negative integers, separated by commas.")
+ checks_passed <- FALSE
+ }
+ # Ensure the case counts contain at least two entries.
+ else if (length(counts) < 2) {
+ output$dataCountsWarn <- shiny::renderText("Error: The list of case counts should contain at least two entries.")
+ checks_passed <- FALSE
+ }
+ else
+ output$dataCountsWarn <- shiny::renderText("")
+
+ if (checks_passed)
+ d <- data.frame(input$dataName, input$dataUnits, t(counts))
+ }
+
+ else {
+ checks_passed <- FALSE
+
+ # Option 2: Upload .csv
+ if (input$dataInputMethod == 2)
+ d <- try(read.csv(input$dataUpload$datapath, header=FALSE))
+ # Option 3: Paste .csv
+ else
+ d <- try(read.csv(text=input$dataPaste, header=FALSE))
+
+ if (is(d, "try-error"))
+ output$dataCSVWarn <- shiny::renderText("Error reading file.")
+ else if (ncol(d) < 4 || anyNA(d[,1]) || anyNA(sapply(d[,3:4], as.numeric)) || !all(trimws(d[,2]) %in% c("Daily", "Weekly")))
+ output$dataCSVWarn <- shiny::renderText("Error: The provided .csv file does not match the required format.")
+ else if (length(intersect(reactive$data_table[,1], d[,1])) > 0)
+ output$dataCSVWarn <- shiny::renderText("Error: The provided .csv file contains dataset names which already exist.")
+ else if (length(unique(d[,1])) != length(d[,1]))
+ output$dataCSVWarn <- shiny::renderText("Error: The provided .csv file contains duplicate dataset names.")
+ else {
+ output$dataCSVWarn <- shiny::renderText("")
+ checks_passed <- TRUE
+ }
+ }
+
+ if (checks_passed) {
+ d[,3:ncol(d)] <- apply(d[,3:ncol(d)], 2, as.numeric)
+ d[,3] <- data.frame(I(lapply(split(d[,3:ncol(d)], 1:nrow(d)), function(x) x[!is.na(x)])))
+ d <- d[,1:3]
+ d[,2] <- trimws(d[,2])
+ colnames(d) <- c("Name", "Reporting Frequency", "Case Counts")
+ reactive$data_table <- rbind(reactive$data_table, d)
+ reactive$est_table <- update_est_row(input, output, d, reactive$estimators, reactive$est_table)
+ }
+ })
+
+ output$dataTable <- shiny::renderDataTable(reactive$data_table, escape=FALSE)
+ output$estTable <- shiny::renderDataTable(reactive$est_table, escape=FALSE)
+
+ # Download table of estimates as a .csv file.
+ output$downloadEst <- shiny::downloadHandler(
+ filename=function() { paste0("Rnaught-", Sys.Date(), ".csv") },
+ content=function(file) { write.csv(reactive$est_table, file) }
+ )
+
+ shiny::observeEvent(input$addWP, {
+ if (input$serialWPKnown == 1) {
+ serial <- validate_serial(input, output, "serialWPInput", "serialWPWarn")
+ if (!is.na(serial)) {
+ reactive$estimators[[length(reactive$estimators)+1]] <- list(method="WP", mu=serial, search=list(B=100, shape.max=10, scale.max=10), mu_units=input$serialWPUnits)
+ reactive$est_table <- update_est_col(input, output, reactive$data_table, reactive$estimators[[length(reactive$estimators)]], reactive$est_table)
+ }
+ }
+ else {
+ checks_passed <- TRUE
+
+ grid_length <- as.numeric(input$gridLengthInput)
+ max_shape <- as.numeric(input$gridShapeInput)
+ max_scale <- as.numeric(input$gridScaleInput)
+
+ if (is.na(grid_length) || grid_length <= 0 || grid_length %% 1 != 0) {
+ output$gridLengthWarn <- shiny::renderText("Error: The grid size must be a positive integer.")
+ output$gridShapeWarn <- shiny::renderText("")
+ output$gridScaleWarn <- shiny::renderText("")
+ checks_passed <- FALSE
+ }
+ else {
+ output$gridLengthWarn <- shiny::renderText("")
+
+ if (is.na(max_shape) || max_shape < 1 / grid_length) {
+ output$gridShapeWarn <- shiny::renderText("Error: The maximum shape must be at least the reciprocal of the grid length.")
+ checks_passed <- FALSE
+ }
+ else
+ output$gridShapeWarn <- shiny::renderText("")
+
+ if (is.na(max_scale) || max_scale < 1 / grid_length) {
+ output$gridShapeWarn <- shiny::renderText("Error: The maximum scale must be at least the reciprocal of the grid length.")
+ checks_passed <- FALSE
+ }
+ else
+ output$gridScaleWarn <- shiny::renderText("")
+ }
+
+ if (checks_passed) {
+ reactive$estimators[[length(reactive$estimators)+1]] <- list(method="WP", mu=NA, search=list(B=grid_length, shape.max=max_shape, scale.max=max_scale), mu_units=input$serialWPUnits)
+ reactive$est_table <- update_est_col(input, output, reactive$data_table, reactive$estimators[[length(reactive$estimators)]], reactive$est_table)
+ }
+ }
+ })
+
+ shiny::observeEvent(input$addseqB, {
+ serial <- validate_serial(input, output, "serialseqBInput", "serialseqBWarn")
+ checks_passed <- !is.na(serial)
+
+ kappa <- as.numeric(input$kappaInput)
+ if (is.na(kappa) || kappa <= 0) {
+ output$kappaWarn <- shiny::renderText("Error: The maximum value must be a positive number.")
+ checks_passed <- FALSE
+ }
+ else
+ output$kappaWarn <- shiny::renderText("")
+
+ if (checks_passed) {
+ reactive$estimators[[length(reactive$estimators)+1]] <- list(method="seqB", mu=serial, kappa=kappa, mu_units=input$serialseqBUnits)
+ reactive$est_table <- update_est_col(input, output, reactive$data_table, reactive$estimators[[length(reactive$estimators)]], reactive$est_table)
+ }
+ })
+
+ shiny::observeEvent(input$addID, {
+ serial <- validate_serial(input, output, "serialIDInput", "serialIDWarn")
+ if (!is.na(serial)) {
+ reactive$estimators[[length(reactive$estimators)+1]] <- list(method="ID", mu=serial, mu_units=input$serialIDUnits)
+ reactive$est_table <- update_est_col(input, output, reactive$data_table, reactive$estimators[[length(reactive$estimators)]], reactive$est_table)
+ }
+ })
+
+ shiny::observeEvent(input$addIDEA, {
+ serial <- validate_serial(input, output, "serialIDEAInput", "serialIDEAWarn")
+ if (!is.na(serial)) {
+ reactive$estimators[[length(reactive$estimators)+1]] <- list(method="IDEA", mu=serial, mu_units=input$serialIDEAUnits)
+ reactive$est_table <- update_est_col(input, output, reactive$data_table, reactive$estimators[[length(reactive$estimators)]], reactive$est_table)
+ }
+ })
+}
+
+validate_serial <- function(input, output, serialInputId, serialWarnId) {
+ serial <- as.numeric(input[[serialInputId]])
+ if (is.na(serial) || serial <= 0) {
+ output[[serialWarnId]] <- shiny::renderText("Error: The mean serial interval should be a non-negative number.")
+ serial <- NA
+ }
+ else
+ output[[serialWarnId]] <- shiny::renderText("") # Clear warning text.
+
+ return(serial)
+}
+
+update_est_col <- function(input, output, datasets, estimator, est_table) {
+ if (nrow(datasets) == 0)
+ new_est_table <- data.frame(matrix(nrow=0, ncol=ncol(est_table)+1))
+ else {
+ estimates <- rep(NA, nrow(datasets))
+
+ for (row in 1:nrow(datasets))
+ estimates[row] <- eval_estimator(input, output, estimator, datasets[row,])
+
+ if (nrow(est_table) == 0)
+ new_est_table <- cbind(datasets[,1], estimates)
+ else
+ new_est_table <- cbind(est_table, estimates)
+ }
+
+ colnames(new_est_table) <- c(colnames(est_table), shiny::HTML(paste0(estimator$method, "<br/>(&mu; = ", estimator$mu, " ", tolower(estimator$mu_units), ")")))
+ return(new_est_table)
+}
+
+update_est_row <- function(input, output, datasets, estimators, est_table) {
+ if (length(estimators) == 0) {
+ if (nrow(est_table) == 0)
+ new_est_table <- data.frame(datasets[,1])
+ else
+ new_est_table <- data.frame(c(est_table[,1], datasets[,1]))
+
+ colnames(new_est_table) <- colnames(est_table)
+ }
+ else {
+ new_est_table <- data.frame(matrix(nrow=nrow(datasets), ncol=length(estimators)))
+
+ for (row in 1:nrow(datasets))
+ for (col in 1:length(estimators))
+ new_est_table[row, col] <- eval_estimator(input, output, estimators[[col]], datasets[row,])
+
+ new_est_table <- cbind(datasets[,1], new_est_table)
+ colnames(new_est_table) <- colnames(est_table)
+ new_est_table <- rbind(est_table, new_est_table)
+ }
+
+ return(new_est_table)
+}
+
+eval_estimator <- function(input, output, estimator, dataset) {
+ # Adjust serial interval to match time unit of case counts.
+ serial <- estimator$mu
+ if (estimator$mu_units == "Days" && dataset[2] == "Weekly")
+ serial <- serial / 7
+ else if (estimator$mu_units == "Weeks" && dataset[2] == "Daily")
+ serial <- serial * 7
+
+ # White and Panago
+ if (estimator$method == "WP") {
+ estimate <- WP(unlist(dataset[3]), mu=serial, search=estimator$search)
+
+ if (!is.na(estimator$mu))
+ estimate <- round(estimate$Rhat, 2)
+ # Display the estimated mean of the serial distribution if mu was not specified.
+ else {
+ if (dataset[2] == "Daily")
+ mu_units <- "days"
+ else
+ mu_units <- "weeks"
+ MSI <- sum(estimate$SD$supp * estimate$SD$pmf)
+ estimate <- shiny::HTML(paste0(round(estimate$Rhat, 2), "<br/>(&mu; = ", round(MSI, 2), " ", mu_units, ")"))
+ }
+ }
+ # Sequential Bayes
+ else if (estimator$method == "seqB")
+ estimate <- round(seqB(unlist(dataset[3]), mu=serial, kappa=estimator$kappa)$Rhat, 2)
+ # Incidence Decay
+ else if (estimator$method == "ID")
+ estimate <- round(ID(unlist(dataset[3]), mu=serial), 2)
+ # Incidence Decay with Exponential Adjustement
+ else if (estimator$method == "IDEA")
+ estimate <- round(IDEA(unlist(dataset[3]), mu=serial), 2)
+
+ return(estimate)
+}