]>
nmode's Git Repositories - Rnaught/blob - R/WP_internal.R
1 #' WP method background function WP_known
3 #' This is a background/internal function called by \code{WP}. It computes the maximum
4 #' likelihood estimator of R0 assuming that the serial distribution is known and finite discrete.
6 #' @param NT Vector of case counts.
7 #' @param p Discretized version of the serial distribution.
9 #' @return The function returns the maximum likelihood estimator of R0.
12 WP_known
<- function(NT
, p
) {
18 Nt
<- NT
[i
:max(1, i
-k
+1)]
19 mu_t
[i
] <- sum(p
[1:min(k
, i
)] * Nt
)
22 Rhat
<- sum(NT
[-1]) / sum(mu_t
)
26 #' WP method background function WP_unknown
28 #' This is a background/internal function called by \code{WP}. It computes the maximum likelihood estimator
29 #' of R0 assuming that the serial distribution is unknown but comes from a discretized gamma distribution.
30 #' The function then implements a simple grid search algorithm to obtain the maximum likelihood estimator
31 #' of R0 as well as the gamma parameters.
33 #' @param NT Vector of case counts.
34 #' @param B Length of grid for shape and scale (grid search parameter).
35 #' @param shape.max Maximum shape value (grid \code{search} parameter).
36 #' @param scale.max Maximum scale value (grid \code{search} parameter).
37 #' @param tol cutoff value for cumulative distribution function of the serial distribution (defaults to 0.999).
39 #' @return The function returns \code{Rhat}, the maximum likelihood estimator of R0, as well as the maximum
40 #' likelihood estimator of the discretized serial distribution given by \code{p} (the probability mass
41 #' function) and \code{range.max} (the distribution has support on the integers one to \code{range.max}).
42 #' The function also returns \code{resLL} (all values of the log-likelihood) at \code{shape} (grid for
43 #' shape parameter) and at \code{scale} (grid for scale parameter), as well as \code{resR0} (the full
44 #' vector of maximum likelihood estimators), \code{JJ} (the locations for the likelihood for these), and
45 #' \code{J0} (the location for the maximum likelihood estimator \code{Rhat}). If \code{JJ} and \code{J0}
46 #' are not the same, this means that the maximum likelihood estimator is not unique.
48 #' @importFrom stats pgamma qgamma
51 WP_unknown
<- function(NT
, B
=100, shape.max
=10, scale.max
=10, tol
=0.999) {
52 shape
<- seq(0, shape.max
, length.out
=B
+1)
53 scale
<- seq(0, scale.max
, length.out
=B
+1)
57 resLL
<- matrix(0,B
,B
)
58 resR0
<- matrix(0,B
,B
)
62 range.max
<- ceiling(qgamma(tol
, shape
=shape
[i
], scale
=scale
[j
]))
63 p
<- diff(pgamma(0:range.max
, shape
=shape
[i
], scale
=scale
[j
]))
65 mle
<- WP_known(NT
, p
)
66 resLL
[i
,j
] <- computeLL(p
, NT
, mle
)
71 J0
<- which.max(resLL
)
73 JJ
<- which(resLL
== resLL
[J0
], arr.ind
=TRUE)
74 range.max
<- ceiling(qgamma(tol
, shape
=shape
[JJ
[1]], scale
=scale
[JJ
[2]]))
75 p
<- diff(pgamma(0:range.max
, shape
=shape
[JJ
[1]], scale
=scale
[JJ
[2]]))
78 return(list(Rhat
=R0hat
, J0
=J0
, ll
=resLL
, Rs
=resR0
, scale
=scale
, shape
=shape
, JJ
=JJ
, p
=p
, range.max
=range.max
))
81 #' WP method background function computeLL
83 #' This is a background/internal function called by \code{WP}. It computes the log-likelihood.
85 #' @param NT Vector of case counts.
86 #' @param p Discretized version of the serial distribution.
87 #' @param R0 Basic reproductive ratio.
89 #' @return This function returns the log-likelihood at the input variables and parameters.
92 computeLL
<- function(p
, NT
, R0
) {
98 Nt
<- NT
[i
:max(1, i
-k
+1)]
99 mu_t
[i
] <- sum(p
[1:min(k
, i
)] * Nt
)
103 LL
<- sum(NT
[-1] * log(mu_t
)) - sum(mu_t
)