]> nmode's Git Repositories - Rnaught/blob - articles/seq_bayes_post.html
Deploying to gh-pages from @ MI2YorkU/Rnaught@042a3cc17d711ecb49b828c7d8fdf8383db9bea9 🚀
[Rnaught] / articles / seq_bayes_post.html
1 <!DOCTYPE html>
2 <!-- Generated by pkgdown: do not edit by hand --><html lang="en">
3 <head>
4 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5 <meta charset="utf-8">
6 <meta http-equiv="X-UA-Compatible" content="IE=edge">
7 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
8 <title>Sequential Bayes: Utilizing the Posterior Distribution • Rnaught</title>
9 <script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
10 <link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet">
11 <script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/font-awesome-6.4.2/css/all.min.css" rel="stylesheet">
12 <link href="../deps/font-awesome-6.4.2/css/v4-shims.min.css" rel="stylesheet">
13 <script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Sequential Bayes: Utilizing the Posterior Distribution">
14 </head>
15 <body>
16 <a href="#main" class="visually-hidden-focusable">Skip to contents</a>
17
18
19 <nav class="navbar navbar-expand-lg fixed-top bg-light" data-bs-theme="light" aria-label="Site navigation"><div class="container">
20
21 <a class="navbar-brand me-2" href="../index.html">Rnaught</a>
22
23 <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">0.1.0</small>
24
25
26 <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
27 <span class="navbar-toggler-icon"></span>
28 </button>
29
30 <div id="navbar" class="collapse navbar-collapse ms-3">
31 <ul class="navbar-nav me-auto">
32 <li class="nav-item"><a class="nav-link" href="../reference/index.html">Reference</a></li>
33 <li class="active nav-item dropdown">
34 <button class="nav-link dropdown-toggle" type="button" id="dropdown-articles" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true">Articles</button>
35 <ul class="dropdown-menu" aria-labelledby="dropdown-articles">
36 <li><a class="dropdown-item" href="../articles/seq_bayes_post.html">Sequential Bayes: Utilizing the Posterior Distribution</a></li>
37 <li><a class="dropdown-item" href="../articles/wp_serial.html">White and Pagano: Utilizing the Serial Distribution</a></li>
38 </ul>
39 </li>
40 </ul>
41 <ul class="navbar-nav">
42 <li class="nav-item"><form class="form-inline" role="search">
43 <input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json">
44 </form></li>
45 <li class="nav-item"><a class="external-link nav-link" href="https://github.com/MI2YorkU/Rnaught/" aria-label="GitHub"><span class="fa fab fa-github fa-lg"></span></a></li>
46 </ul>
47 </div>
48
49
50 </div>
51 </nav><div class="container template-article">
52
53
54
55
56 <div class="row">
57 <main id="main" class="col-md-9"><div class="page-header">
58 <img src="../logo.svg" class="logo" alt=""><h1>Sequential Bayes: Utilizing the Posterior Distribution</h1>
59
60
61 <small class="dont-index">Source: <a href="https://github.com/MI2YorkU/Rnaught/blob/master/vignettes/seq_bayes_post.Rmd" class="external-link"><code>vignettes/seq_bayes_post.Rmd</code></a></small>
62 <div class="d-none name"><code>seq_bayes_post.Rmd</code></div>
63 </div>
64
65
66
67 <p>In the Sequential Bayes method, the probability distribution of R0 is
68 updated sequentially from one case count to the next, starting from a
69 (discretized) uniform prior. By default, the function
70 <code>seq_bayes</code> returns the mean of the last updated posterior
71 distribution as its estimate of R0. However, by setting the parameter
72 <code>post</code> to <code>TRUE</code>, it is possible to return the
73 final distribution itself:</p>
74 <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
75 <code class="sourceCode R"><span><span class="co"># Daily case counts.</span></span>
76 <span><span class="va">cases</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">1</span>, <span class="fl">4</span>, <span class="fl">10</span>, <span class="fl">5</span>, <span class="fl">3</span>, <span class="fl">4</span>, <span class="fl">19</span>, <span class="fl">3</span>, <span class="fl">3</span>, <span class="fl">14</span>, <span class="fl">4</span><span class="op">)</span></span>
77 <span></span>
78 <span><span class="va">posterior</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/seq_bayes.html">seq_bayes</a></span><span class="op">(</span><span class="va">cases</span>, mu <span class="op">=</span> <span class="fl">8</span>, kappa <span class="op">=</span> <span class="fl">7</span>, post <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
79 <p>First, the distribution can be used to retrieve the original estimate
80 (had <code>post</code> been left to its default value of
81 <code>FALSE</code>) by calculating its mean:</p>
82 <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
83 <code class="sourceCode R"><span><span class="co"># `supp` is the support of the distribution, and `pmf` is its probability mass</span></span>
84 <span><span class="co"># function.</span></span>
85 <span><span class="va">post_mean</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/sum.html" class="external-link">sum</a></span><span class="op">(</span><span class="va">posterior</span><span class="op">$</span><span class="va">supp</span> <span class="op">*</span> <span class="va">posterior</span><span class="op">$</span><span class="va">pmf</span><span class="op">)</span></span>
86 <span><span class="va">post_mean</span></span>
87 <span><span class="co">#&gt; [1] 1.476652</span></span>
88 <span></span>
89 <span><span class="co"># Verify that the following is true:</span></span>
90 <span><span class="va">post_mean</span> <span class="op">==</span> <span class="fu"><a href="../reference/seq_bayes.html">seq_bayes</a></span><span class="op">(</span><span class="va">cases</span>, mu <span class="op">=</span> <span class="fl">8</span>, kappa <span class="op">=</span> <span class="fl">7</span><span class="op">)</span></span>
91 <span><span class="co">#&gt; [1] TRUE</span></span></code></pre></div>
92 <p>Another use of the posterior is to obtain an alternative estimate of
93 R0. For instance, the following extracts the posterior mode rather than
94 the mean:</p>
95 <div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
96 <code class="sourceCode R"><span><span class="va">post_mode</span> <span class="op">&lt;-</span> <span class="va">posterior</span><span class="op">$</span><span class="va">supp</span><span class="op">[</span><span class="fu"><a href="https://rdrr.io/r/base/which.min.html" class="external-link">which.max</a></span><span class="op">(</span><span class="va">posterior</span><span class="op">$</span><span class="va">pmf</span><span class="op">)</span><span class="op">]</span></span>
97 <span><span class="va">post_mode</span></span>
98 <span><span class="co">#&gt; [1] 1.36</span></span></code></pre></div>
99 <p>Returning the posterior is suitable for visualization purposes. Below
100 is a graph containing the uniform prior, final posterior distribution,
101 posterior mean and posterior mode:</p>
102 <p><img src="seq_bayes_post_files/figure-html/unnamed-chunk-5-1.png" width="1400"></p>
103 </main>
104 </div>
105
106
107
108 <footer><div class="pkgdown-footer-left">
109 <p>Developed by Sawitree Boonpatcharanon, Jane Heffernan, Hanna Jankowski, Naeem Model.</p>
110 </div>
111
112 <div class="pkgdown-footer-right">
113 <p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.1.1.</p>
114 </div>
115
116 </footer>
117 </div>
118
119
120
121
122
123 </body>
124 </html>