estimators_logic <- function(input, output, react_values) { # Initialize a data frame to hold estimates. react_values$estimates_table <- data.frame(Dataset = character(0)) # Initialize a list to hold added estimators. react_values$estimators <- list() add_id(input, output, react_values) add_idea(input, output, react_values) add_seq_bayes(input, output, react_values) add_wp(input, output, react_values) render_estimates(output, react_values) delete_estimators(input, react_values) export_estimates(output, react_values) } # If an estimator is added, ensure it is not a duplicate and add it to the list # of estimators. This function should be called at the end of each # estimator-specific 'add' function, after validating their parameters. add_estimator <- function(method, new_estimator, output, react_values) { num_estimators <- length(react_values$estimators) # Check whether the new estimator is a duplicate, and warn if so. for (i in seq_len(num_estimators)) { if (identical(new_estimator, react_values$estimators[[i]])) { showNotification("Error: This estimator has already been added.", duration = 3, id = "notify-error" ) return() } } # Add the new estimator to the list of estimators. react_values$estimators[[num_estimators + 1]] <- new_estimator showNotification("Estimator added successfully.", duration = 3, id = "notify-success" ) # Evaluate all the new estimator on all existing datasets and create a new # column in the estimates table. update_estimates_col(new_estimator, react_values) } # Ensure serial intervals are specified as positive numbers. validate_mu <- function(method, input, output) { mu <- suppressWarnings(as.numeric(trimws(input[[paste0("mu_", method)]]))) if (is.na(mu) || mu <= 0) { output[[paste0("mu_", method, "_warn")]] <- renderText( "The serial interval must be a positive number." ) return(NULL) } output[[paste0("mu_", method, "_warn")]] <- renderText("") mu } # Incidence Decay (ID). add_id <- function(input, output, react_values) { observeEvent(input$add_id, { mu <- validate_mu("id", input, output) if (!is.null(mu)) { new_estimator <- list( method = "id", mu = mu, mu_units = input$mu_id_units ) add_estimator("id", new_estimator, output, react_values) } }) } # Incidence Decay and Exponential Adjustment (IDEA). add_idea <- function(input, output, react_values) { observeEvent(input$add_idea, { mu <- validate_mu("idea", input, output) if (!is.null(mu)) { new_estimator <- list( method = "idea", mu = mu, mu_units = input$mu_idea_units ) add_estimator("idea", new_estimator, output, react_values) } }) } # Sequential Bayes (seqB). add_seq_bayes <- function(input, output, react_values) { observeEvent(input$add_seq_bayes, { mu <- validate_mu("seq_bayes", input, output) kappa <- trimws(input$kappa) kappa <- if (kappa == "") 20 else suppressWarnings(as.numeric(kappa)) if (is.na(kappa) || kappa <= 0) { output$kappa_warn <- renderText( "The maximum prior must be a positive number." ) } else if (!is.null(mu)) { output$kappa_warn <- renderText("") new_estimator <- list( method = "seq_bayes", mu = mu, mu_units = input$mu_seq_bayes_units, kappa = kappa ) add_estimator("seq_bayes", new_estimator, output, react_values) } }) } # White and Pagano (WP). add_wp <- function(input, output, react_values) { observeEvent(input$add_wp, { if (input$wp_mu_known == "Yes") { mu <- validate_mu("wp", input, output) if (!is.null(mu)) { new_estimator <- list(method = "wp", mu = mu, mu_units = input$mu_wp_units ) add_estimator("wp", new_estimator, output, react_values) } } else { grid_length <- trimws(input$grid_length) max_shape <- trimws(input$max_shape) max_scale <- trimws(input$max_scale) suppressWarnings({ grid_length <- if (grid_length == "") 100 else as.numeric(grid_length) max_shape <- if (max_shape == "") 10 else as.numeric(max_shape) max_scale <- if (max_scale == "") 10 else as.numeric(max_scale) }) valid <- TRUE if (is.na(grid_length) || grid_length <= 0) { output$grid_length_warn <- renderText( "The grid length must be a positive integer." ) valid <- FALSE } else { output$grid_length_warn <- renderText("") } if (is.na(max_shape) || max_shape <= 0) { output$max_shape_warn <- renderText( "The maximum shape must be a positive number." ) valid <- FALSE } else { output$max_shape_warn <- renderText("") } if (is.na(max_scale) || max_scale <= 0) { output$max_scale_warn <- renderText( "The maximum scale must be a positive number." ) valid <- FALSE } else { output$max_scale_warn <- renderText("") } if (valid) { new_estimator <- list(method = "wp", mu = NA, grid_length = grid_length, max_shape = max_shape, max_scale = max_scale ) add_estimator("wp", new_estimator, output, react_values) } } }) } # Convert an estimator's specified serial interval to match the time units of # the given dataset. convert_mu_units <- function(data_units, estimator_units, mu) { if (data_units == "Days" && estimator_units == "Weeks") { return(mu * 7) } else if (data_units == "Weeks" && estimator_units == "Days") { return(mu / 7) } mu } # Add a column to the estimates table when a new estimator is added. update_estimates_col <- function(estimator, react_values) { dataset_rows <- seq_len(nrow(react_values$data_table)) estimates <- dataset_rows for (row in dataset_rows) { estimate <- eval_estimator(estimator, react_values$data_table[row, ]) estimates[row] <- estimate } estimates <- data.frame(estimates) colnames(estimates) <- estimates_col_name(estimates, estimator) react_values$estimates_table <- cbind( react_values$estimates_table, estimates ) } # Evaluate the specified estimator on the given dataset. eval_estimator <- function(estimator, dataset) { cases <- as.integer(unlist(strsplit(dataset[, 3], ","))) if (estimator$method == "id") { mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) estimate <- round(Rnaught::id(cases, mu), 2) } else if (estimator$method == "idea") { mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) estimate <- round(Rnaught::idea(cases, mu), 2) } else if (estimator$method == "seq_bayes") { mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) estimate <- round(Rnaught::seq_bayes(cases, mu, estimator$kappa), 2) } else if (estimator$method == "wp") { if (is.na(estimator$mu)) { estimate <- Rnaught::wp(cases, serial = TRUE, grid_length = estimator$grid_length, max_shape = estimator$max_shape, max_scale = estimator$max_scale ) estimated_mu <- round(sum(estimate$supp * estimate$pmf), 2) estimate <- paste0(round(estimate$r0, 2), " (μ = ", estimated_mu, " ", tolower(dataset[, 2]), ")" ) } else { mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) estimate <- round(Rnaught::wp(cases, mu), 2) } } return(estimate) } # Create the column name of an estimator when it is # added to the estimates table. estimates_col_name <- function(estimates, estimator) { if (estimator$method == "id") { return(paste0("ID", " (μ = ", estimator$mu, " ", tolower(estimator$mu_units), ")" )) } else if (estimator$method == "idea") { return(paste0("IDEA", " (μ = ", estimator$mu, " ", tolower(estimator$mu_units), ")" )) } else if (estimator$method == "seq_bayes") { return(paste0("seqB", " (μ = ", estimator$mu, " ", tolower(estimator$mu_units), ", κ = ", estimator$kappa, ")" )) } else if (estimator$method == "wp") { if (is.na(estimator$mu)) { return(paste0("WP (", estimator$grid_length, ", ", round(estimator$max_shape, 3), ", ", round(estimator$max_scale, 3), ")" )) } else { return(paste0("WP", " (μ = ", estimator$mu, " ", tolower(estimator$mu_units), ")" )) } } } # Render the estimates table whenever it is updated. render_estimates <- function(output, react_values) { observe({ output$estimates_table <- DT::renderDataTable(react_values$estimates_table, selection = list(target = "column", selectable = c(0)), escape = FALSE, rownames = FALSE, options = list( columnDefs = list(list(className = "dt-left", targets = "_all")) ), ) }) } # Delete columns from the estimates table, # as well as the corresponding estimators. delete_estimators <- function(input, react_values) { observeEvent(input$estimators_delete, { cols_selected <- input$estimates_table_columns_selected react_values$estimators <- react_values$estimators[-cols_selected] react_values$estimates_table[, cols_selected + 1] <- NULL }) } # Export estimates table as a CSV file. export_estimates <- function(output, react_values) { output$estimates_export <- downloadHandler( filename = function() { paste0( "Rnaught_estimates_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv" ) }, content = function(file) { output_table <- data.frame( lapply(react_values$estimates_table, sub_entity) ) colnames(output_table) <- sub_entity( colnames(react_values$estimates_table) ) write.csv(output_table, file, row.names = FALSE) } ) } # Substitute HTML entity codes with natural names. sub_entity <- function(obj) { obj <- gsub("μ", "mu", obj) obj <- gsub("κ", "kappa", obj) obj }