#' Incidence Decay (ID) #' #' This function implements a least squares estimation method of R0 due to #' Fisman et al. (PloS One, 2013). See details for implementation notes. #' #' The method is based on a straightforward incidence decay model. The estimate #' of R0 is the value which minimizes the sum of squares between observed case #' counts and cases counts expected under the model. #' #' This method is based on an approximation of the SIR model, which is most #' valid at the beginning of an epidemic. The method assumes that the mean of #' the serial distribution (sometimes called the serial interval) is known. The #' final estimate can be quite sensitive to this value, so sensitivity testing #' is strongly recommended. Users should be careful about units of time (e.g., #' are counts observed daily or weekly?) when implementing. #' #' @param cases Vector of case counts. The vector must be non-empty and only #' contain positive integers. #' @param mu Mean of the serial distribution. This must be a positive number. #' The value should match the case counts in time units. For example, if case #' counts are weekly and the serial distribution has a mean of seven days, #' then `mu` should be set to `1`. If case counts are daily and the serial #' distribution has a mean of seven days, then `mu` should be set to `7`. #' #' @return An estimate of the basic reproduction number (R0). #' #' @references [Fisman et al. (PloS One, 2013)]( #' https://doi.org/10.1371/journal.pone.0083622) #' #' @seealso [idea()] for a similar method. #' #' @export #' #' @examples #' # Weekly data. #' cases <- c(1, 4, 10, 5, 3, 4, 19, 3, 3, 14, 4) #' #' # Obtain R0 when the serial distribution has a mean of five days. #' id(cases, mu = 5 / 7) #' #' # Obtain R0 when the serial distribution has a mean of three days. #' id(cases, mu = 3 / 7) id <- function(cases, mu) { validate_cases(cases, min_length = 1, min_count = 1) if (!is_real(mu) || mu <= 0) { stop("The serial interval (`mu`) must be a number greater than 0.", call. = FALSE ) } exp(sum((log(cases) * mu) / seq_along(cases)) / length(cases)) }