aboutsummaryrefslogtreecommitdiff
path: root/inst/web/scripts/data.R
diff options
context:
space:
mode:
Diffstat (limited to 'inst/web/scripts/data.R')
-rw-r--r--inst/web/scripts/data.R253
1 files changed, 253 insertions, 0 deletions
diff --git a/inst/web/scripts/data.R b/inst/web/scripts/data.R
new file mode 100644
index 0000000..8f8694c
--- /dev/null
+++ b/inst/web/scripts/data.R
@@ -0,0 +1,253 @@
+# Main logic block for data-related interactions.
+data_logic <- function(input, output, react_values) {
+ # Initialize a data frame to hold the datasets.
+ react_values$data_table <- data.frame(
+ Name = character(0),
+ `Time units` = character(0),
+ `Case counts` = character(0),
+ check.names = FALSE
+ )
+
+ manual_entry(input, output, react_values)
+ upload_data(input, output, react_values)
+ load_samples(input, output, react_values)
+ render_data_table(output, react_values)
+ render_plot(input, output, react_values, "Days")
+ render_plot(input, output, react_values, "Weeks")
+ delete_data(input, react_values)
+ export_data(output, react_values)
+}
+
+# Convert the input case counts string to an integer vector.
+tokenize_counts <- function(counts_str) {
+ suppressWarnings(as.integer(unlist(strsplit(trimws(counts_str), ","))))
+}
+
+# Render the plots for daily and weekly data when the data table is updated.
+render_plot <- function(input, output, react_values, time_units) {
+ observe({
+ datasets <- react_values$data_table[
+ which(react_values$data_table[["Time units"]] == time_units),
+ ]
+
+ data_plot <- plotly::plot_ly(type = "scatter", mode = "lines")
+ if (nrow(datasets) > 0) {
+ for (i in seq_len(nrow(datasets))) {
+ counts <- tokenize_counts(datasets[i, 3])
+ data_plot <- plotly::add_trace(data_plot,
+ x = seq_along(counts) - 1, y = counts, name = datasets[i, 1]
+ )
+ }
+ }
+
+ plot_title <- paste(
+ if (time_units == "Days") "Daily" else "Weekly", "case counts"
+ )
+
+ data_plot <- plotly::layout(data_plot, title = plot_title,
+ xaxis = list(title = time_units), yaxis = list(title = "Cases")
+ )
+
+ data_plot <- plotly::config(data_plot, displaylogo = FALSE,
+ toImageButtonOptions = list(
+ filename = paste0("Rnaught_data_", tolower(time_units), "_plot")
+ )
+ )
+
+ output[[paste0("data_plot_", tolower(time_units))]] <-
+ plotly::renderPlotly(data_plot)
+ })
+}
+
+# Validate and add manually-entered datasets.
+manual_entry <- function(input, output, react_values) {
+ observeEvent(input$data_bulk, {
+ validate_data(input, output, react_values, "data_area")
+ })
+}
+
+# Validate and add datasets from a CSV file.
+upload_data <- function(input, output, react_values) {
+ observeEvent(input$data_upload, {
+ validate_data(input, output, react_values, "data_upload")
+ })
+}
+
+# Validate datasets and update the data table.
+validate_data <- function(input, output, react_values, data_source) {
+ tryCatch(
+ {
+ if (data_source == "data_area") {
+ datasets <- read.csv(text = input$data_area, header = FALSE, sep = ",")
+ } else if (data_source == "data_upload") {
+ datasets <- read.csv(
+ file = input$data_upload$datapath, header = FALSE, sep = ","
+ )
+ }
+
+ names <- trimws(datasets[, 1])
+ units <- trimws(datasets[, 2])
+ counts <- apply(data.frame(datasets[, 3:ncol(datasets)]), 1,
+ function(row) {
+ row <- suppressWarnings(as.integer(row))
+ toString(row[!is.na(row) & row >= 0])
+ }
+ )
+
+ warning_text <- ""
+
+ # Ensure the dataset names are neither blank nor duplicates.
+ if (anyNA(names) || any(names == "")) {
+ warning_text <- paste0(warning_text,
+ "Each row must begin with a non-blank dataset name.<br>"
+ )
+ } else {
+ if (length(unique(names)) != length(names)) {
+ warning_text <- paste0(warning_text,
+ "The rows contain duplicate dataset names.<br>"
+ )
+ }
+ if (any(names %in% react_values$data_table[, 1])) {
+ warning_text <- paste0(warning_text,
+ "The rows contain dataset names which already exist.<br>"
+ )
+ }
+ }
+
+ # Ensure the second entry in each row is a time unit equal to
+ # "Days" or "Weeks".
+ if (!all(units %in% c("Days", "Weeks"))) {
+ warning_text <- paste0(warning_text,
+ "The second entry in each row must be either 'Days' or 'Weeks'.<br>"
+ )
+ }
+
+ # Ensure the counts in each row have at least one non-negative integer.
+ if (any(counts == "")) {
+ warning_text <- paste0(warning_text,
+ "Each row must contain at least one non-negative integer.<br>"
+ )
+ }
+
+ output[[paste0(data_source, "_warn")]] <- renderUI(HTML(warning_text))
+
+ if (warning_text == "") {
+ # Add the new datasets to the data table.
+ new_rows <- data.frame(names, units, counts)
+ colnames(new_rows) <- c("Name", "Time units", "Case counts")
+ react_values$data_table <- rbind(react_values$data_table, new_rows)
+
+ # Evaluate all existing estimators on the new datasets and update the
+ # corresponding columns in the estimates table.
+ update_estimates_cols(new_rows, react_values)
+
+ showNotification("Datasets added successfully.", duration = 3)
+ }
+ },
+ error = function(e) {
+ output[[paste0(data_source, "_warn")]] <- renderText(
+ "The input does not match the required format."
+ )
+ }
+ )
+}
+
+# Load sample datasets.
+load_samples <- function(input, output, react_values) {
+ observeEvent(input$data_samples, {
+ names <- c()
+ units <- c()
+ counts <- c()
+
+ # COVID-19 Canada, March 2020 (weekly).
+ if (input$covid_canada) {
+ names <- c(names, "COVID-19 Canada 2020/03/03 - 2020/03/31")
+ units <- c(units, "Weeks")
+ counts <- c(counts, toString(Rnaught::COVIDCanada[seq(41, 69, 7), 2]))
+ }
+ # COVID-19 Ontario, March 2020 (weekly).
+ if (input$covid_ontario) {
+ names <- c(names, "COVID-19 Ontario 2020/03/03 - 2020/03/31")
+ units <- c(units, "Weeks")
+ counts <- c(counts,
+ toString(Rnaught::COVIDCanadaPT[seq(10176, 10204, 7), 3])
+ )
+ }
+
+ if (length(names) == 0) {
+ output$data_samples_warn <- renderText(
+ "At least one sample dataset must be selected."
+ )
+ } else if (any(names %in% react_values$data_table[, 1])) {
+ output$data_samples_warn <- renderText(
+ "At least one of the selected dataset names already exist."
+ )
+ } else {
+ output$data_samples_warn <- renderText("")
+
+ new_rows <- data.frame(names, units, counts)
+ colnames(new_rows) <- c("Name", "Time units", "Case counts")
+ react_values$data_table <- rbind(react_values$data_table, new_rows)
+
+ # Evaluate all existing estimators on the sample datasets and update the
+ # corresponding columns in the estimates table.
+ update_estimates_cols(new_rows, react_values)
+
+ showNotification("Datasets added successfully.", duration = 3)
+ }
+ })
+}
+
+# Render the data table when new datasets are added.
+render_data_table <- function(output, react_values) {
+ observe({
+ output$data_table <- DT::renderDataTable(
+ react_values$data_table, rownames = FALSE
+ )
+ })
+}
+
+# Delete rows in the data table and the corresponding columns in the estimates
+# table.
+delete_data <- function(input, react_values) {
+ observeEvent(input$data_delete, {
+ rows_selected <- input$data_table_rows_selected
+ react_values$data_table <- react_values$data_table[-rows_selected, ]
+ react_values$estimates_table <-
+ react_values$estimates_table[, -(rows_selected + 2)]
+ })
+}
+
+# Export data table as a CSV file.
+export_data <- function(output, react_values) {
+ output$data_export <- downloadHandler(
+ filename = function() {
+ paste0("Rnaught_data_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv")
+ },
+ content = function(file) {
+ write.csv(react_values$data_table, file, row.names = FALSE)
+ }
+ )
+}
+
+# When new datasets are added, evaluate all existing estimators on them and
+# add new columns to the estimates table.
+update_estimates_cols <- function(datasets, react_values) {
+ new_cols <- data.frame(
+ matrix(nrow = nrow(react_values$estimates_table), ncol = nrow(datasets))
+ )
+ colnames(new_cols) <- datasets[, 1]
+
+ if (nrow(new_cols) > 0) {
+ for (row in seq_len(nrow(new_cols))) {
+ estimator <- react_values$estimators[[row]]
+ for (col in seq_len(ncol(new_cols))) {
+ new_cols[row, col] <- eval_estimator(estimator, datasets[col, ])
+ }
+ }
+ }
+
+ react_values$estimates_table <- cbind(
+ react_values$estimates_table, new_cols
+ )
+}