diff options
Diffstat (limited to 'inst/app/scripts')
-rw-r--r-- | inst/app/scripts/data.R | 253 | ||||
-rw-r--r-- | inst/app/scripts/estimators.R | 327 |
2 files changed, 0 insertions, 580 deletions
diff --git a/inst/app/scripts/data.R b/inst/app/scripts/data.R deleted file mode 100644 index 8f8694c..0000000 --- a/inst/app/scripts/data.R +++ /dev/null @@ -1,253 +0,0 @@ -# Main logic block for data-related interactions. -data_logic <- function(input, output, react_values) { - # Initialize a data frame to hold the datasets. - react_values$data_table <- data.frame( - Name = character(0), - `Time units` = character(0), - `Case counts` = character(0), - check.names = FALSE - ) - - manual_entry(input, output, react_values) - upload_data(input, output, react_values) - load_samples(input, output, react_values) - render_data_table(output, react_values) - render_plot(input, output, react_values, "Days") - render_plot(input, output, react_values, "Weeks") - delete_data(input, react_values) - export_data(output, react_values) -} - -# Convert the input case counts string to an integer vector. -tokenize_counts <- function(counts_str) { - suppressWarnings(as.integer(unlist(strsplit(trimws(counts_str), ",")))) -} - -# Render the plots for daily and weekly data when the data table is updated. -render_plot <- function(input, output, react_values, time_units) { - observe({ - datasets <- react_values$data_table[ - which(react_values$data_table[["Time units"]] == time_units), - ] - - data_plot <- plotly::plot_ly(type = "scatter", mode = "lines") - if (nrow(datasets) > 0) { - for (i in seq_len(nrow(datasets))) { - counts <- tokenize_counts(datasets[i, 3]) - data_plot <- plotly::add_trace(data_plot, - x = seq_along(counts) - 1, y = counts, name = datasets[i, 1] - ) - } - } - - plot_title <- paste( - if (time_units == "Days") "Daily" else "Weekly", "case counts" - ) - - data_plot <- plotly::layout(data_plot, title = plot_title, - xaxis = list(title = time_units), yaxis = list(title = "Cases") - ) - - data_plot <- plotly::config(data_plot, displaylogo = FALSE, - toImageButtonOptions = list( - filename = paste0("Rnaught_data_", tolower(time_units), "_plot") - ) - ) - - output[[paste0("data_plot_", tolower(time_units))]] <- - plotly::renderPlotly(data_plot) - }) -} - -# Validate and add manually-entered datasets. -manual_entry <- function(input, output, react_values) { - observeEvent(input$data_bulk, { - validate_data(input, output, react_values, "data_area") - }) -} - -# Validate and add datasets from a CSV file. -upload_data <- function(input, output, react_values) { - observeEvent(input$data_upload, { - validate_data(input, output, react_values, "data_upload") - }) -} - -# Validate datasets and update the data table. -validate_data <- function(input, output, react_values, data_source) { - tryCatch( - { - if (data_source == "data_area") { - datasets <- read.csv(text = input$data_area, header = FALSE, sep = ",") - } else if (data_source == "data_upload") { - datasets <- read.csv( - file = input$data_upload$datapath, header = FALSE, sep = "," - ) - } - - names <- trimws(datasets[, 1]) - units <- trimws(datasets[, 2]) - counts <- apply(data.frame(datasets[, 3:ncol(datasets)]), 1, - function(row) { - row <- suppressWarnings(as.integer(row)) - toString(row[!is.na(row) & row >= 0]) - } - ) - - warning_text <- "" - - # Ensure the dataset names are neither blank nor duplicates. - if (anyNA(names) || any(names == "")) { - warning_text <- paste0(warning_text, - "Each row must begin with a non-blank dataset name.<br>" - ) - } else { - if (length(unique(names)) != length(names)) { - warning_text <- paste0(warning_text, - "The rows contain duplicate dataset names.<br>" - ) - } - if (any(names %in% react_values$data_table[, 1])) { - warning_text <- paste0(warning_text, - "The rows contain dataset names which already exist.<br>" - ) - } - } - - # Ensure the second entry in each row is a time unit equal to - # "Days" or "Weeks". - if (!all(units %in% c("Days", "Weeks"))) { - warning_text <- paste0(warning_text, - "The second entry in each row must be either 'Days' or 'Weeks'.<br>" - ) - } - - # Ensure the counts in each row have at least one non-negative integer. - if (any(counts == "")) { - warning_text <- paste0(warning_text, - "Each row must contain at least one non-negative integer.<br>" - ) - } - - output[[paste0(data_source, "_warn")]] <- renderUI(HTML(warning_text)) - - if (warning_text == "") { - # Add the new datasets to the data table. - new_rows <- data.frame(names, units, counts) - colnames(new_rows) <- c("Name", "Time units", "Case counts") - react_values$data_table <- rbind(react_values$data_table, new_rows) - - # Evaluate all existing estimators on the new datasets and update the - # corresponding columns in the estimates table. - update_estimates_cols(new_rows, react_values) - - showNotification("Datasets added successfully.", duration = 3) - } - }, - error = function(e) { - output[[paste0(data_source, "_warn")]] <- renderText( - "The input does not match the required format." - ) - } - ) -} - -# Load sample datasets. -load_samples <- function(input, output, react_values) { - observeEvent(input$data_samples, { - names <- c() - units <- c() - counts <- c() - - # COVID-19 Canada, March 2020 (weekly). - if (input$covid_canada) { - names <- c(names, "COVID-19 Canada 2020/03/03 - 2020/03/31") - units <- c(units, "Weeks") - counts <- c(counts, toString(Rnaught::COVIDCanada[seq(41, 69, 7), 2])) - } - # COVID-19 Ontario, March 2020 (weekly). - if (input$covid_ontario) { - names <- c(names, "COVID-19 Ontario 2020/03/03 - 2020/03/31") - units <- c(units, "Weeks") - counts <- c(counts, - toString(Rnaught::COVIDCanadaPT[seq(10176, 10204, 7), 3]) - ) - } - - if (length(names) == 0) { - output$data_samples_warn <- renderText( - "At least one sample dataset must be selected." - ) - } else if (any(names %in% react_values$data_table[, 1])) { - output$data_samples_warn <- renderText( - "At least one of the selected dataset names already exist." - ) - } else { - output$data_samples_warn <- renderText("") - - new_rows <- data.frame(names, units, counts) - colnames(new_rows) <- c("Name", "Time units", "Case counts") - react_values$data_table <- rbind(react_values$data_table, new_rows) - - # Evaluate all existing estimators on the sample datasets and update the - # corresponding columns in the estimates table. - update_estimates_cols(new_rows, react_values) - - showNotification("Datasets added successfully.", duration = 3) - } - }) -} - -# Render the data table when new datasets are added. -render_data_table <- function(output, react_values) { - observe({ - output$data_table <- DT::renderDataTable( - react_values$data_table, rownames = FALSE - ) - }) -} - -# Delete rows in the data table and the corresponding columns in the estimates -# table. -delete_data <- function(input, react_values) { - observeEvent(input$data_delete, { - rows_selected <- input$data_table_rows_selected - react_values$data_table <- react_values$data_table[-rows_selected, ] - react_values$estimates_table <- - react_values$estimates_table[, -(rows_selected + 2)] - }) -} - -# Export data table as a CSV file. -export_data <- function(output, react_values) { - output$data_export <- downloadHandler( - filename = function() { - paste0("Rnaught_data_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv") - }, - content = function(file) { - write.csv(react_values$data_table, file, row.names = FALSE) - } - ) -} - -# When new datasets are added, evaluate all existing estimators on them and -# add new columns to the estimates table. -update_estimates_cols <- function(datasets, react_values) { - new_cols <- data.frame( - matrix(nrow = nrow(react_values$estimates_table), ncol = nrow(datasets)) - ) - colnames(new_cols) <- datasets[, 1] - - if (nrow(new_cols) > 0) { - for (row in seq_len(nrow(new_cols))) { - estimator <- react_values$estimators[[row]] - for (col in seq_len(ncol(new_cols))) { - new_cols[row, col] <- eval_estimator(estimator, datasets[col, ]) - } - } - } - - react_values$estimates_table <- cbind( - react_values$estimates_table, new_cols - ) -} diff --git a/inst/app/scripts/estimators.R b/inst/app/scripts/estimators.R deleted file mode 100644 index 7c457ea..0000000 --- a/inst/app/scripts/estimators.R +++ /dev/null @@ -1,327 +0,0 @@ -# Main logic block for estimator-related interactions. -estimators_logic <- function(input, output, react_values) { - # Initialize a data frame to hold estimates. - react_values$estimates_table <- data.frame( - Estimator = character(0), - `Serial interval` = character(0), - check.names = FALSE - - ) - # Initialize a list to hold added estimators. - react_values$estimators <- list() - - add_id(input, output, react_values) - add_idea(input, output, react_values) - add_seq_bayes(input, output, react_values) - add_wp(input, output, react_values) - - render_estimates(output, react_values) - delete_estimators(input, react_values) - export_estimates(output, react_values) -} - -# If an estimator is added, ensure it is not a duplicate and add it to the list -# of estimators. This function should be called at the end of each -# estimator-specific 'add' function, after validating their parameters. -add_estimator <- function(method, new_estimator, output, react_values) { - num_estimators <- length(react_values$estimators) - - # Check whether the new estimator is a duplicate, and warn if so. - for (i in seq_len(num_estimators)) { - if (identical(new_estimator, react_values$estimators[[i]])) { - showNotification( - "Error: This estimator has already been added.", duration = 3 - ) - return() - } - } - - # Add the new estimator to the list of estimators. - react_values$estimators[[num_estimators + 1]] <- new_estimator - - showNotification("Estimator added successfully.", duration = 3) - - # Evaluate the new estimator on all existing datasets and create a new row in - # the estimates table. - update_estimates_row(new_estimator, react_values) -} - -# Ensure serial intervals are specified as positive numbers. -validate_mu <- function(method, input, output) { - mu <- suppressWarnings(as.numeric(trimws(input[[paste0("mu_", method)]]))) - if (is.na(mu) || mu <= 0) { - output[[paste0("mu_", method, "_warn")]] <- renderText( - "The serial interval must be a positive number." - ) - return(NULL) - } - output[[paste0("mu_", method, "_warn")]] <- renderText("") - mu -} - -# Incidence Decay (ID). -add_id <- function(input, output, react_values) { - observeEvent(input$add_id, { - mu <- validate_mu("id", input, output) - if (!is.null(mu)) { - new_estimator <- list( - method = "id", mu = mu, mu_units = input$mu_id_units - ) - add_estimator("id", new_estimator, output, react_values) - } - }) -} - -# Incidence Decay and Exponential Adjustment (IDEA). -add_idea <- function(input, output, react_values) { - observeEvent(input$add_idea, { - mu <- validate_mu("idea", input, output) - if (!is.null(mu)) { - new_estimator <- list( - method = "idea", mu = mu, mu_units = input$mu_idea_units - ) - add_estimator("idea", new_estimator, output, react_values) - } - }) -} - -# Sequential Bayes (seqB). -add_seq_bayes <- function(input, output, react_values) { - observeEvent(input$add_seq_bayes, { - mu <- validate_mu("seq_bayes", input, output) - - kappa <- trimws(input$kappa) - kappa <- if (kappa == "") 20 else suppressWarnings(as.numeric(kappa)) - - if (is.na(kappa) || kappa < 1) { - output$kappa_warn <- renderText( - "The maximum prior must be a number greater than or equal to 1." - ) - } else if (!is.null(mu)) { - output$kappa_warn <- renderText("") - new_estimator <- list( - method = "seq_bayes", mu = mu, - mu_units = input$mu_seq_bayes_units, kappa = kappa - ) - add_estimator("seq_bayes", new_estimator, output, react_values) - } - }) -} - -# White and Pagano (WP). -add_wp <- function(input, output, react_values) { - observeEvent(input$add_wp, { - if (input$wp_mu_known == "Yes") { - mu <- validate_mu("wp", input, output) - if (!is.null(mu)) { - new_estimator <- list(method = "wp", - mu = mu, mu_units = input$mu_wp_units - ) - add_estimator("wp", new_estimator, output, react_values) - } - } else { - grid_length <- trimws(input$grid_length) - max_shape <- trimws(input$max_shape) - max_scale <- trimws(input$max_scale) - - suppressWarnings({ - grid_length <- if (grid_length == "") 100 else as.numeric(grid_length) - max_shape <- if (max_shape == "") 10 else as.numeric(max_shape) - max_scale <- if (max_scale == "") 10 else as.numeric(max_scale) - }) - - valid <- TRUE - - if (is.na(grid_length) || grid_length <= 0) { - output$grid_length_warn <- renderText( - "The grid length must be a positive integer." - ) - valid <- FALSE - } else { - output$grid_length_warn <- renderText("") - } - - if (is.na(max_shape) || max_shape <= 0) { - output$max_shape_warn <- renderText( - "The maximum shape must be a positive number." - ) - valid <- FALSE - } else { - output$max_shape_warn <- renderText("") - } - - if (is.na(max_scale) || max_scale <= 0) { - output$max_scale_warn <- renderText( - "The maximum scale must be a positive number." - ) - valid <- FALSE - } else { - output$max_scale_warn <- renderText("") - } - - if (valid) { - new_estimator <- list(method = "wp", mu = NA, grid_length = grid_length, - max_shape = max_shape, max_scale = max_scale - ) - add_estimator("wp", new_estimator, output, react_values) - } - } - }) -} - -# Convert an estimator's specified serial interval to match the time units of -# the given dataset. -convert_mu_units <- function(data_units, estimator_units, mu) { - if (data_units == "Days" && estimator_units == "Weeks") { - return(mu * 7) - } else if (data_units == "Weeks" && estimator_units == "Days") { - return(mu / 7) - } - mu -} - -# Add a row to the estimates table when a new estimator is added. -update_estimates_row <- function(estimator, react_values) { - dataset_rows <- seq_len(nrow(react_values$data_table)) - estimates <- c() - - if (nrow(react_values$data_table) > 0) { - estimates <- dataset_rows - for (row in dataset_rows) { - estimate <- eval_estimator(estimator, react_values$data_table[row, ]) - estimates[row] <- estimate - } - } - - new_row <- data.frame( - t(c(estimator_name(estimator), estimator_mu_text(estimator), estimates)) - ) - colnames(new_row) <- colnames(react_values$estimates_table) - - react_values$estimates_table <- rbind( - react_values$estimates_table, new_row - ) -} - -# Evaluate the specified estimator on the given dataset. -eval_estimator <- function(estimator, dataset) { - cases <- as.integer(unlist(strsplit(dataset[, 3], ","))) - - tryCatch( - { - if (estimator$method == "id") { - mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) - estimate <- round(Rnaught::id(cases, mu), 2) - } else if (estimator$method == "idea") { - mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) - estimate <- round(Rnaught::idea(cases, mu), 2) - } else if (estimator$method == "seq_bayes") { - mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) - estimate <- round(Rnaught::seq_bayes(cases, mu, estimator$kappa), 2) - } else if (estimator$method == "wp") { - if (is.na(estimator$mu)) { - estimate <- Rnaught::wp(cases, serial = TRUE, - grid_length = estimator$grid_length, - max_shape = estimator$max_shape, max_scale = estimator$max_scale - ) - estimated_mu <- round(sum(estimate$supp * estimate$pmf), 2) - mu_units <- if (dataset[, 2] == "Days") "day(s)" else "week(s)" - estimate <- paste0( - round(estimate$r0, 2), " (SI = ", estimated_mu, " ", mu_units, ")" - ) - } else { - mu <- convert_mu_units(dataset[, 2], estimator$mu_units, estimator$mu) - estimate <- round(Rnaught::wp(cases, mu), 2) - } - } - - return(estimate) - }, error = function(e) { - showNotification( - paste0(toString(e), - " [Estimator: ", sub(" .*", "", estimator_name(estimator)), - ", Dataset: ", dataset[, 1], "]" - ), duration = 6 - ) - return("—") - } - ) -} - -# Create the name of an estimator to be added to the first column of the -# estimates table. -estimator_name <- function(estimator) { - if (estimator$method == "id") { - return("ID") - } else if (estimator$method == "idea") { - return("IDEA") - } else if (estimator$method == "seq_bayes") { - return(paste0("seqB", " (κ = ", estimator$kappa, ")")) - } else if (estimator$method == "wp") { - if (is.na(estimator$mu)) { - return(paste0("WP (", estimator$grid_length, ", ", - round(estimator$max_shape, 3), ", ", round(estimator$max_scale, 3), ")" - )) - } else { - return("WP") - } - } -} - -# Create the text to be displayed for the serial interval in the second column -# of the estimates table. -estimator_mu_text <- function(estimator) { - if (is.na(estimator$mu)) { - return("—") - } - mu_units <- if (estimator$mu_units == "Days") "day(s)" else "week(s)" - paste(estimator$mu, mu_units) -} - -# Render the estimates table whenever it is updated. -render_estimates <- function(output, react_values) { - observe({ - output$estimates_table <- DT::renderDataTable(react_values$estimates_table, - escape = FALSE, rownames = FALSE, - options = list( - columnDefs = list(list(className = "dt-left", targets = "_all")) - ), - ) - }) -} - -# Delete rows from the estimates table and the corresponding estimators. -delete_estimators <- function(input, react_values) { - observeEvent(input$estimators_delete, { - rows_selected <- input$estimates_table_rows_selected - react_values$estimators <- react_values$estimators[-rows_selected] - react_values$estimates_table <- - react_values$estimates_table[-rows_selected, ] - }) -} - -# Export estimates table as a CSV file. -export_estimates <- function(output, react_values) { - output$estimates_export <- downloadHandler( - filename = function() { - paste0( - "Rnaught_estimates_", format(Sys.time(), "%y-%m-%d_%H-%M-%S"), ".csv" - ) - }, - content = function(file) { - output_table <- data.frame( - lapply(react_values$estimates_table, sub_entity) - ) - colnames(output_table) <- sub_entity( - colnames(react_values$estimates_table) - ) - write.csv(output_table, file, row.names = FALSE) - } - ) -} - -# Substitute HTML entity codes with natural names. -sub_entity <- function(obj) { - obj <- gsub("κ", "kappa", obj) - obj -} |