X-Git-Url: https://git.nmode.ca/Rnaught/blobdiff_plain/14ec98c9bfc49f963e30159dc7db9f554088fb44..a50ca5855eecf12908327252d627df3af076fc88:/R/WP_known.R diff --git a/R/WP_known.R b/R/WP_known.R index 40f1ded..4c43ed2 100644 --- a/R/WP_known.R +++ b/R/WP_known.R @@ -1,27 +1,24 @@ #' WP method background function WP_known #' -#' This is a background/internal function called by \code{WP}. It computes the maximum likelihood estimator of R0 assuming that the serial distribution is known and finite discrete. +#' This is a background/internal function called by \code{WP}. It computes the maximum +#' likelihood estimator of R0 assuming that the serial distribution is known and finite discrete. #' -#' @param NT vector of case counts -#' @param p discretized version of the serial distribution -#' @return The function returns \code{Rhat}, the maximum likelihood estimator of R0. -#' @export -# - -WP_known <- function(NT, p){ - - k <- length(p) - TT <- length(NT)-1 - mu_t <- rep(0, TT) - for(i in 1:TT){ - Nt <- NT[i:max(1,i-k+1)] -# print(Nt) -# print(p[1:min(k,i)]) - mu_t[i] <- sum(p[1:min(k,i)]*Nt) - } - Rhat <- sum(NT[-1])/sum(mu_t) - return(list(Rhat=Rhat)) - -} +#' @param NT Vector of case counts. +#' @param p Discretized version of the serial distribution. +#' +#' @return The function returns the maximum likelihood estimator of R0. +#' +#' @keywords internal +WP_known <- function(NT, p) { + k <- length(p) + TT <- length(NT) - 1 + mu_t <- rep(0, TT) + for (i in 1:TT) { + Nt <- NT[i:max(1, i-k+1)] + mu_t[i] <- sum(p[1:min(k, i)] * Nt) + } + Rhat <- sum(NT[-1]) / sum(mu_t) + return(Rhat) +}