-#' @return The function returns \code{Rhat}, the maximum likelihood estimator of R0, as well as the maximum
-#' likelihood estimator of the discretized serial distribution given by \code{p} (the probability mass
-#' function) and \code{range.max} (the distribution has support on the integers one to \code{range.max}).
-#' The function also returns \code{resLL} (all values of the log-likelihood) at \code{shape} (grid for
-#' shape parameter) and at \code{scale} (grid for scale parameter), as well as \code{resR0} (the full
-#' vector of maximum likelihood estimators), \code{JJ} (the locations for the likelihood for these), and
-#' \code{J0} (the location for the maximum likelihood estimator \code{Rhat}). If \code{JJ} and \code{J0}
-#' are not the same, this means that the maximum likelihood estimator is not unique.
+#' @return The function returns \code{Rhat}, the maximum likelihood estimator of
+#' R0, as well as the maximum likelihood estimator of the discretized
+#' serial distribution given by \code{p} (the probability mass function)
+#' and \code{range.max} (the distribution has support on the integers
+#' one to \code{range.max}). The function also returns \code{resLL} (all
+#' values of the log-likelihood) at \code{shape} (grid for shape
+#' parameter) and at \code{scale} (grid for scale parameter), as well as
+#' \code{resR0} (the full vector of maximum likelihood estimators),
+#' \code{JJ} (the locations for the likelihood for these), and \code{J0}
+#' (the location for the maximum likelihood estimator \code{Rhat}). If
+#' \code{JJ} and \code{J0} are not the same, this means that the maximum
+#' likelihood estimator is not unique.