#' WP method background function WP_known
#'
-#' This is a background/internal function called by \code{WP}. It computes the maximum likelihood estimator of R0 assuming that the serial distribution is known and finite discrete.
+#' This is a background/internal function called by \code{WP}. It computes the maximum
+#' likelihood estimator of R0 assuming that the serial distribution is known and finite discrete.
#'
-#' @param NT vector of case counts
-#' @param p discretized version of the serial distribution
-#' @return The function returns \code{Rhat}, the maximum likelihood estimator of R0.
-#' @export
-#
-
-WP_known <- function(NT, p){
-
- k <- length(p)
- TT <- length(NT)-1
- mu_t <- rep(0, TT)
- for(i in 1:TT){
- Nt <- NT[i:max(1,i-k+1)]
-# print(Nt)
-# print(p[1:min(k,i)])
- mu_t[i] <- sum(p[1:min(k,i)]*Nt)
- }
- Rhat <- sum(NT[-1])/sum(mu_t)
- return(list(Rhat=Rhat))
-
-}
+#' @param NT Vector of case counts.
+#' @param p Discretized version of the serial distribution.
+#'
+#' @return The function returns the maximum likelihood estimator of R0.
+#'
+#' @keywords internal
+WP_known <- function(NT, p) {
+ k <- length(p)
+ TT <- length(NT) - 1
+ mu_t <- rep(0, TT)
+ for (i in 1:TT) {
+ Nt <- NT[i:max(1, i-k+1)]
+ mu_t[i] <- sum(p[1:min(k, i)] * Nt)
+ }
+ Rhat <- sum(NT[-1]) / sum(mu_t)
+ return(Rhat)
+}